Monatshefte für Chemie 114, 753-771 (1983)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1983

Beiträge zur Chemie der Pyrrolpigmente, 48. Mitt.¹:

Phytochrommodellstudien: Diastereomere 2,3-Dihydrobilatriene-abc

Heinz Falk*, Karl Grubmayr, Gerhard Kapl, Norbert Müller und Ulrich Zrunek

Institut für Analytische, Organische und Physikalische Chemie, Johannes-Kepler-Universität Linz, A-4040 Linz, Österreich

(Eingegangen 20. Dezember 1982. Angenommen 10. Januar 1983)

On the Chemistry of Pyrrole Pigments XLVIII: Phytochrome Models: Diastereomeric 2,3-Dihydrobilatrienes-abc

2,3-Dihydrobilatrienes-abc substituted analogous to the natural chromophor of phytochrome may exhibit diastereomerism at the exocyclic double bond of the unsaturated lactam ring. Their properties are comparable to the previouslystudied bilatriene-abc diastereomers. At the exocyclic double bond of the saturated lactam ring however, diastereomers could only be prepared for thermodynamic reasons. The spectroscopic properties of the various diastereomers of five compounds were recorded and are discussed with respect to their utility in structural studies of the natural pigment system.

(Keywords: Diastereomers; 2,3-Dihydrobilatrienes-abc; Phytochrome Models)

Einleitung

Das 2,3-Dihydrobilatrienskelett bildet den Chromophor des Phytochroms². Erste Studien haben sich mit Tautomeriegleichgewichten im Bereich des reduzierten Laktamringes von 3,4-Dihydropyrromethenonen³ und des Pyrromethenfragmentes integraler Pigmente beschäftigt¹. Von zentraler Bedeutung für das Verständnis der Phototransformation des Phytochroms sind Derivate, die durch photochemische Einflüsse entstehen können. Eine solche Photoreaktion, bei der eine Isomerisierung an der exocyclischen Laktamringdoppelbindung eintritt, fanden wir zunächst an Partialstrukturmodellen wie Arylmethylenpyrrolinonen⁴ und Pyrromethenonen⁵ und später auch an Bilatrienen-abc. Bei den letzteren Derivaten kann je nach strukturellen Eigenheiten die Isomerisierung an der adsorbierten Spezies^{6,7} als auch an Gleichgewichtssystemen mit nucleophiler Addition an C_{10}^8 wie auch gelegentlich direkt⁹ ausgeführt werden.

Für 2,3-Dihydrobilatriene wurden bislang Hinweise erhalten, daß lediglich die exocyclische Doppelbindung des ungesättigten Laktamringes der Isomerisierung zugänglich ist^{10,11}. Unserer Zielsetzung³ folgend, soll sich vorliegende Mitteilung mit der Problematik der diastereomeren 2,3-Dihydrobilatriene-abc auseinandersetzen. Dies ist zudem durch den Hinweis besonders aktuell, daß sich die Peptide von P_r und P_{fr} durch eine diesbezügliche Diastereomerie unterscheiden¹².

Ergebnisse und Diskussion

Wie das Beispiel der Verbindung 1 zeigt, ist neben dem thermodynamisch bevorzugten Diastereomeren der Konfiguration (4Z, 9Z, (15Z) auch dessen (4Z, 9Z, 15E) Diastereomeres problemlos zugänglich: Sowohl Photoisomerisierung in adsorbierter Form (vgl.6) oder in homogener Lösung in Gegenwart eines Donors (vgl.8) als auch der direkte Synthesezugang unter Verwendung des (E)-konfigurierten Pyrromethenons (vgl.13) führen zum Ziele. Die Struktur dieses neuen Diastereomeren (4Z, 9Z, 15E)-1 folgt aus der Analyse der spektroskopischen Daten sowie der leichten thermischen und photochemischen Umwandlung zu (4Z, 9Z, 15Z)-1. Diese verläuft glatt in homogener Lösung (z. B. CHCl₃) in sichtbarem Licht, was mit den bisherigen Erfahrungen⁷⁻⁹ auf dem Gebiet diastereomerer Bilatriene-abc in Einklang ist. Die Signalzuordnung im ¹H-NMR-Spektrum erfolgte wie für (4Z, 9Z, 15Z)-1 angegeben durch Beobachtung spezifischer Kopplungsphänomene¹. Die Tautomeriesituation konnte für das Methenfragment im Sinne der in der Formelübersicht angegebenen Struktur aus dem unterschiedlichen Kopplungsverhalten der beiden Pyrromethen-Methylgruppen-Paare geklärt werden (vgl. hiezu¹). Die eindeutige Zuordnung der Konfiguration erfolgte in der üblichen Weise⁵⁻⁷ durch NOE-Differenzspektroskopie. Eigenschaften und Verhalten

(4Z,9Z,15Z)-1

(4Z,9Z,15E)-1

(z. B. hypsochrome Verschiebung der langwelligen Absorptionsbande um etwa 40 nm und Verschiebung des ¹H-NMR-Signals des entsprechenden Methinprotons von 5,31 auf 5,74 ppm) von (4Z, 9Z, 15E)-1 sind analog denen von (E, Z, Z)-konfigurierten Bilatrienen-abc^{6,7}.

Bei den oben angegebenen Photoisomerisierungsvarianten konnte jedoch in keinem Fall ein Hinweis auf das Entstehen von anderen Photodiastereomeren erhalten werden. Ebenso liefert die Kondensation von (E)-konfiguriertem Dihydropyrromethenon³ mit (Z)-Pyrromethenon ausschließlich (4Z, 9Z, 15Z)-1. Dies entspricht auch den Ergebnissen, die in der Lit.¹⁰ enthalten sind. Der Grund für diese Regioselektivität kann nun entweder in der selektiv verlaufenden Photoreaktion oder aber in einer eventuellen thermischen Labilität von (4E)-konfigurierten Dihydrobilatrienen-abe liegen.

Einen Hinweis dazu liefert das folgende photochemische Experiment: Wird (4Z, 9Z, 15Z)-1 in Perdeuterodimethylsulfoxid mit 2-Mercaptoethanol versetzt, so entsteht wie bei den Bilatrienen-abc8 das rubinoide C-10-Addukt. Strahlt man jeweils selektiv Licht in die beiden Bereiche der Absorptionsbanden (410 und 270 nm) ein, die den Übergängen der beiden Partialchromophore^{3,5} entsprechen, so wird in beiden Fällen nur für den Pyrromethenteil die Bildung des Photodiastereomeren beobachtet [im ¹H-NMR-Spektrum werden für das (Z, Z)-konfigurierte Addukt Methinsignale für CH-5 und CH-15 bei 5,51 und 5,96 ppm, sowie für CH-10 zwei Signale auf Grund der Diastereomerie bei 5,19 und 5,17 ppm gefunden. Durch Einwirkung von Licht wird das Signal des CH-15 nach 6,15 ppm verschoben]. Da die thermische Stabilität von diastereomeren Dihydropyrromethenonen für eine Isolierung ausreichend ist³, liegt der Grund für die photochemische Selektivität offenbar in einer effizienten intramolekularen Energieübertragung zwischen den beiden Subchromophoren. Da nun die Zugänglichkeit von (5E)-konfigurierten Diastereomeren über die photochemische Reaktion nicht gegeben ist, versuchte man, sie auf Grund der Ergebnisse an Bilatrienen-abc^{8,14}, nach denen solche Diastereomere unter Ausnutzung der thermodynamischen Situation ebenfalls zugänglich sind, zu erhalten. Wird nämlich die relative Raumerfüllung der Liganden in den Positionen "1" und "4" eines 5-Methylen-3-pyrrolin-2-on-Fragmentes verändert, so ändern sich auch entsprechend die thermodynamischen Stabilitäten der Diastereomeren. Daß dies auch für Pyrrolidinonfragmente gilt, konnte kürzlich ebenfalls gezeigt werden³.

1. (5E)-Diastereomere durch vergleichbare Raumerfüllung der Liganden an N-21 und C-3: 2, 3

Befreit man rein formal in 1 die Position "3" von der Seitenkette, so erhält man 2. In diesem Derivat bilden eine NH- und eine CH_2 -Gruppierung die Flankierung der exocyclischen Doppelbindung des Laktamringes — dies sollte wegen der ähnlichen Raumerfüllung³ zur thermodynamischen Stabilisierung der Konfiguration (4*E*) von 2 (gegenüber 1) führen. Tatsächlich wird bei der Synthese ein Gemisch zweier sich sehr rasch ineinander umwandelnder Isomerer erhalten, die chromatographisch nicht isoliert werden können. Das Gleichgewicht liegt, wie ¹H-NMR-Spektren zeigen, in CDCl₃ weitgehend auf der Seite des (4Z, 9Z, 15Z)-Diastereomeren (ca. 92%), wird jedoch in Pyridin

(4E,10Z,15E)-2

zugunsten des (4*E*, 9*Z*, 15*Z*)-Diastereomeren verschoben. Die Signalzuordnung für die ¹H-NMR-Spektren in CDCl₃ erfolgte für (4*Z*, 9*Z*, 15*Z*)-**2** in der üblichen Weise aus charakteristischen Kopplungen¹ (z. B. CH₂-3 \leftrightarrow CH-5, CH₃-18 \leftrightarrow CH-15, CH₃-7 \leftrightarrow CH₃-7 \leftrightarrow CH-10); NOE-Messungen bestätigen die Konfigurationszuordnung. Kopplungsphänomene gestatten auch die Zuordnung der wesentlichen Signale von (4*E*, 9*Z*, 15*Z*)-**2**. Besonders auffällig ist die starke Verschiebung des CH-5-Signals von 5,43 auf 5,86 ppm, aber auch das CH-10-Signal reagiert mit einer deutlichen Verschiebung nach höheren Frequenzen, was bei Isomerisierung an der Position "15" in 1 nicht ausgeprägt ist.

Daß mit der Ausbildung des (4E)-Diastereomeren keine Änderung der Tautomerie im Bereich des Pyrromethenfragmentes verknüpft ist,

Abb. 1. COSY-Experiment für [(4Z, 9Z, 15Z)-2 + (4E, 9Z, 15Z)-2: z + e] in Pyridin- d_5 ; 298 K. *a* Projektion in die f_1 -Achse; *b* Höhenschichtlinien f_1-f_2 ; *c* Ausschnitt der Methylgruppenregion; *d* Hochaufgelöstes Spektrum der Methylgruppenregion entsprechend *c*

kann zweifelsfrei durch die ¹H-NMR-Spektroskopie in Pyridin nachgewiesen werden. Darin ist, wie erwähnt, das Gleichgewicht zugunsten des (4*E*)-Isomeren verschoben, so daß einschlägige Experimente an beiden Diastereomeren möglich sind. Abb. 1 zeigt das Ergebnis eines diesbezüglichen COSY-Experimentes:

Dafür wurde die Verzögerungszeit 7 der Pulssequenz so justiert, daß ein maximaler Effekt für skalare Kopplungen J = 1 Hz auftritt, da die für die Zuordnungs- und Tautomerieproblematik relevanten Kopplungskonstanten in dieser Größenordnung zu erwarten sin sind¹. Ausgehend von der auf Grund der chemischen Verschiebungen¹ plausiblen und durch NOE-Messungen bestätigten Zuordnung der Methinsignale können aus dem COSY-Spektrum unmittelbar die Lagen der Signale der CH3-18 und CH2-3 Protonen durch ihre charakteristischen Kopplungen mit CH-15 bzw. CH-5 für beide Isomere bestimmt werden. Die Zuordnung der Signale für die Methylgruppen in den Positionen "8" und "12" erhält man aus dem Kopplungsphänomen mit den benachbarten Methylgruppen an C-7 bzw. C-13, deren Lagen aus den NOE-Experimenten ermittelt wurden. Die übrigen Zuordnungen (CH_3 -2 und CH₂--CH₃-17) ergeben sich durch Intensitätsvergleiche und ein Entkopplungsexperiment (wegen der Optimierung des COSY-Experimentes für J = 1 Hz, erhält man keine verläßlichen Resultate für $J \ge 3$ Hz. Für die Bestimmung der Lage des Tautomeriegleichgewichts an den Ringen B und C wird die Kopplung von CH-10 mit CH₃-7 bzw. CH₃-13 herangezogen (vgl.¹). Da für beide Diastereomere im COSY-Experiment ein Korrelationssignal nur für CH₃-7 beobachtet wird, liegt für beide die gleiche Tautomeriesituation vor (siehe Formelbild). Weiters läßt sich aus dem 2D-Experiment die Existenz einer Kopplung zwischen CH₃-18 und CH₂-17 erkennen.

Kondensation bzw. Photoreaktion in der für 1 diskutierten Weise führt zum Diastereomerenpaar (4Z, 9Z, 15E)-2 + (4E, 9Z, 15E)-2. Ersteres dominiert in CDCl₃, Konfigurationen und Tautomerie im Bereich des Pyrromethenskeletts konnten in der oben beschriebenen Weise geklärt werden. In Pyridin hingegen ist das Gleichgewicht zugunsten von (4E, 9Z, 15E) verschoben, das sich hinsichtlich der Tautomerie im Pyrromethenbereich analog den symmetrisch substituierten Bilatrienen-abc (vgl.¹) verhält, wie dies in der Formelübersicht angedeutet ist. Obwohl in den UV-VIS-Spektren immer beide Spezies mit der Konfiguration (4E) + (4Z) vorliegen, tritt beim Übergang von Derivaten der Konfigurationen (15Z) nach (15E) eine hypsochrome Verschiebung der langwelligen Bande um etwa 40 nm ein. Die Konfigurationsänderung in Position "4" bleibt hingegen ohne weitreichende Folgen für die Lage der langwelligen Absorptionsbande, was ja auf Grund der vergleichbaren Raumerfüllung der Substituenten an N-21 und C-3 und damit vergleichbarer Verdrillung an der benachbarten Einfachbindung in den beiden Derivaten plausibel ist.

Von besonderem Interesse sind die chemischen Verschiebungen der Methingruppen in den ¹H-NMR-Spektren: Neben der Verschiebung des Methinsignals, das zur invertierenden Doppelbindung gehört, wird nur im Falle der Isomerisierung in Position "4" zusätzlich eine ausgeprägte Verschiebung von CH-10 beobachtet.

Werden die Protonen in den kritischen Positionen C-3 und N-21 durch Methylgruppen ersetzt, so gelangt man zum Diastereomerensystem **3**. Das Diastereomerenpaar (4Z, 10Z, 15Z)-**3** + (4E, 10Z, 15Z)-**3** fügt sich hinsichtlich der Tautomeriesituation in erwarteter Weise in das bisher erhaltene Bild (s. o. und Lit.¹) ein. Überraschend ist im Falle von (4Z, 10Z, 15E)-**3** + (4E, 9Z, 15E)-**3** die Fixierung auf ein einziges Tautomeres für das letztere Diastereomere.

(4Z,10Z,15E)-3

Die Isomerisierung an C-15 löst die zu erwartende hypsochrome Verschiebung um etwa 50 nm aus, wogegen jene in Position "4" ohne nennenswerte Folgen bleibt, da ja wiederum die Raumerfüllung der Liganden an C-3 und N-21 vergleichbar ist, wodurch die Verdrillung an der Bindung C-5—C-6 in beiden Diastereomeren vergleichbar sein dürfte. An den Methinpositionen tritt im ¹H-NMR-Spektrum beim Übergang von (4Z, 10Z, 15Z)-3 zu (4E, 10Z, 15Z)-3 die erwartete Verschiebung von CH-5 nach höheren Frequenzen auf, im Gegensatz zu 2 bleiben die anderen Methinsignale jedoch weitgehend unbeeinflußt. Entsprechendes gilt für (4Z, 10Z, 15E)-3 und (4E, 10Z, 15E)-3. Interessant ist die starke Linienverbreiterung im ¹H-NMR-Spektrum von (4Z, 10Z, 15E)-3 die — wie eine abschätzende Studie der Temperaturabhängigkeit zeigte — von einem intramolekularen Austauschprozeß herrührt. Dieser könnte in einem verlangsamten Tautomeriegleichgewicht des Methenfragmentes oder im Auftreten hoher Rotationsbarrieren begründet sein.

Bei direkter Einwirkung von Licht wird [(4Z, 10Z, 15E)-3 + (4E, 9Z, 15E)-3] in [(4Z, 10Z, 15Z)-3 + (4E, 10Z, 15Z)-3] umgewandelt (CHCl₃).

2. (5E)-Diastereomere durch Wasserstoffbrückenbindung: 4

Die Oxogruppierung in Position "3" des Dihydrobilatrienskeletts sollte dann — wie dies von den entsprechenden Dihydropyrromethenonen^{15,16} und den daraus abgeleiteten 3,17-Dioxotetrahydrobilatrienen-abc¹⁶ bekannt ist — zu einer durch eine günstige Wasserstoffbrückenbindung stabilisierte (E)-Konfiguration an der Doppelbindung

in Position ,,4" führen. Tatsächlich sind aus diesem thermodynamischen Grund die beiden Diastereomeren (4Z, 9Z, 15Z)-4 und (4E, 10Z, 15Z)-4 zugänglich. Die Stabilisierung des Grundzustandes von (4E, 10Z, 15Z)-4 verursacht aber auch eine Erhöhung der Rotationsbarriere an der ,,4"-ständigen Doppelbindung, die die Isolierung, Reinigung und Charakterisierung beider Diastereomeren zuläßt.

Die Zuordnung der Konfigurationen für die beiden Diastereomeren erfolgte in der üblichen Weise auf Grund zunächst zugeordneter ¹H-NMR-Signale durch Entkopplungs- bzw. COSY-Experimente und anschließender NOE-Differenzspektroskopie. Darüber hinaus konnte die Konfiguration von (4Z, 9Z, 15Z)-4 auch durch Röntgenstrukturanalyse gesichert werden¹⁷. Ebenso konnte die Tautomeriesituation im Bereich des Pyrromethenfragmentes durch die unterschiedlichen Fernkopplungen zwischen CH₃-7 und CH₃-8, bzw. CH₃-12 und CH₃-13 geklärt werden. Zu beachten ist, daß mit der Isomerisierung in Position "4" gleichzeitig die Position des Protons von N-23 nach N-22 verschoben wird, um so den geänderten Bedürfnissen für die Wasserstoffbrückenbindung gerecht zu werden. Obwohl die Isomerisierung an C-4—C-5 stattfindet, ist hier in bemerkenswerter Weise der Einfluß auf CH-15 am größten, was wahrscheinlich von Anisotropieeffekten der zusätzlichen Carbonylgruppe oder der Protonenverschiebung im Pyrromethenfragment herrühren dürfte.

Im Falle der Verbindung 4 stößt der Zugang zu weiteren Diastereomeren jedoch auf Schwierigkeiten: Die Diastereomeren der (15E)-Konfiguration bilden sich wohl, sie konnten jedoch auf Grund der ungünstigen thermodynamischen und kinetischen Situation weder isoliert noch ausreichend charakterisiert werden.

3. Stabile (5E)-Diastereomere: 5

Wird schließlich, wie in 5, der sterische Einfluß des Liganden an N-21 gegenüber jenen an C-3 dominierend (dies wurde am Gleichgewichtssystem der entsprechenden diastereomeren Dihydropyrromethenone

abgeleitet³), so werden ausschließlich (4E)-konfigurierte Diastereomere zugänglich: Bedingt durch die größere Raumerfüllung der Methylgruppe an N-21 und die vergleichbare für jene an N-24 und Ethyl an C-17 können (4E, 9Z, 15Z)-5 und (4E, 9Z, 15E)-5 isoliert und charakterisiert werden. Die Tautomeriesituation ist in der Formelübersicht angegeben und wurde in der oben beschriebenen Weise erhalten. Wie die UV-VIS-Spektren dieser beiden Diastereomeren nahelegen, ist durch die hohe sterische Belastung im Bereich der endständigen Ringe das chromophore System stark verzerrt. Die Methinsignale im NMR-Spektrum erleiden beim Übergang zwischen den beiden Diastereomeren praktisch keine Verschiebungen, was darauf schließen läßt, daß die durch Isomerisierung an exocyclischen Doppelbindungen verursachten Verschiebungen letztlich auf dadurch ausgelöste Konformationsänderungen zurückzuführen sind. Die Diskussion konformationsanalytischer Aspekte soll jedoch einer späteren Mitteilung vorbehalten bleiben.

Bei Bestrahlungsversuchen (homogene Lösung) wird ein Photostationärzustand der beiden Diastereomeren im Verhältnis 1:1 erhalten.

Zusammenfassender Ausblick

Das Studium der Diastereomerenfamilien 1-5 ermöglicht die folgenden Aussagen, die für weitere Untersuchungen des Naturstoffsystems von Bedeutung sind: Sowohl für die Stellung "4" als auch für "15" ist die Ausbildung von Diastereomeren an der anliegenden exocyclischen Doppelbindung möglich. Die beiden daraus ableitbaren Diastereomerenfamilien unterscheiden sich jedoch phänomenologisch stark voneinander: Die Bildung von Diastereomeren für $\Delta^{4,5}$ konnte bislang nur auf Grund thermodynamischer Gegebenheiten erreicht werden, die $\Delta^{15,16}$ -Diastereomeren scheinen photochemisch in diesem Bereich "inert" zu sein. Ebenso besteht offenbar ein ausgeprägter Unterschied in den kinetischen Stabilitäten - dies soll in der folgenden Mitteilung genauer untersucht werden. Was die beiden wichtigsten Observablen für Naturstoffuntersuchungen anbelangt, ist festzustellen, daß in großen Zügen für die 2.3-Dihydrobilatriene-abc hinsichtlich der Lichtabsorption die Beobachtungen und Ergebnisse aus dem Studium diastereomerer Bilatriene-abc^{7,9} übertragbar sind. Dies gilt vor allem für $\Delta^{15,16}$ -Diastereomere; wegen des großen Einflusses auch anderer Faktoren (wie Konformation, Protonierung und Deprotonierung) auf die Lichtabsorption sei aber ausdrücklich vor einer Überschätzung dieser Meßgröße gewarnt. Die chemischen Verschiebungen der Methingruppen im ¹H-NMR-Spektren dürfte hingegen — ebenfalls mit aller gebotenen Vorsicht - der verläßlichste Indikator für Isomerisierungen an exocyclischen Doppelbindungen sein. Vor allem bei $\Delta^{15, 16}$ -Derivaten und "natürlichem" Substitutionsmuster tritt in allen $\lceil (15Z) \rightleftharpoons (15E) \rceil$ -Fällen die auch für Bilatriene-abc gefundene Verschiebung nach höheren Frequenzen auf. Isomerisierung an $\Delta^{4,5}$ führt beim Übergang von (4Z) nach (4E) wohl zu einer Verschiebung nach höheren Frequenzen, in vergleichbarem Ausmaß können dabei aber auch die Signale der anderen Methingruppen beeinflußt werden. Die Durchführung ergänzender Experimente (NOE) ist deshalb in allen Fällen angezeigt!

Dank

Die vorliegende Untersuchung wurde durch den Fonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. P4606) unterstützt. Unser Dank gilt Herrn Dr. W. Buchberger für die Aufnahme von MS, Frl. M. Selin für präparative Arbeiten und Frau Ing. S. Wansch für technische Hilfeleistungen. Besonders verbunden sind wir den Herren Professoren W. Rüdiger und H. Scheer für die Mitteilung unveröffentlichter Ergebnisse.

Experimenteller Teil

Die Schmelzpunkte bestimmte man mit Hilfe eines Kofler-Heiztischmikroskops (Reichert). ¹H-NMR-, UV-VIS-, IR- und M-Spektren wurden auf den Varian-FT-80A-, Bruker-WM-360-, Perkin-Elmer-330-, Zeiss-IMR-25-, sowie Finnigan-MAT-212-Spektrometern aufgenommen.

Die 360 MHz ¹H-NMR-Spektren wurden im Puls-Fourier-Transformverfahren unter Quadraturdetektion aufgenommen. digitale Auflösung: 0,2 Hz bei einer spektralen Breite von 5000 Hz. Zur Signal- und Tautomeriezuordnung verwendete man charakteristische Kopplungsphänomene (COSY), stereochemische Aspekte untersuchte man mittels NOE-Messungen. Für NOE-Differenzspektren entgaste man die Probelösungen $(10^{-3} \text{ mol } l^{-1} \text{ in } \text{CDCl}_3)$ durch zwei Gefrier-Auftauzyklen (in Pyridin-d5 durch 10 min Durchleiten von Argon). In typischen Experimenten (298 K) setzte man das entsprechende Mikroprogramm des Aspekt-2000-Systems ein, wobei jeweils 256 Transienten on- und off-resonance akkumuliert wurden. Die, auf Grund der hohen Feldstärke und des ungünstigen Molmassenbereichs, sehr kleinen NOEs ($\leq 2\%$) sind durchwegs positiv. COSY-Spektren erhielt man über die Anwendung der Pulssequenz $(T_R - \pi/2 - \tau - t_1 - \pi/2 - \tau - Aquisition)_n$ mit $\tau = 250$ ms und $T_R = 3$ s. Die Aufnahme von 512 FIDs in der t_2 -Dimension (4096 Datenpunkte, 2600 Hz spektrale Breite) erfolgte in einem für N-Typ-Selektion der Korrelationspeaks geeigneten RF-Phasenzyklus: (x, -x, -x, x, y, -y, -y, y)2 für den Anregungsund (x, y, -x, -y, y, -x, -y, x, -x, -y, x, y, -y, x, y, -x) für den Mischungspuls. Vor der 2D-Fourier-Transformation wurde in der t1-Dimension auf 4K mit Nullen aufgefüllt. Die Aufnahme und Verarbeitung erfolgte mit dem Aspekt-2000-Programm DISNMRP.

Chromatographische Trennungen erfolgten an Silicagel-HF-254-DC-Platten (Merck), für die Säulenchromatographie verwendete man Kieselgel 60 (Merck) und für die Mitteldruckchromatographie Silikagel 32—63 μ (Woelm) als Adsorbentien. Für Bestrahlungsexperimente verwendete man Hanau-TQ-150-Quecksilber-Hochdrucklampen, deren kurzwelliger Anteil durch Kantenfilter (Schott) abgetrennt wurde, oder auch einen 1000 W Xenon-Hochdruckbogen mit Hochenergiemonochromator (Kratos).

Bei (E)-konfigurierten Verbindungen achtete man sorgfältig auf den Ausschluß von Licht.

(Z, Z, Z)-1 stellte man nach Lit.¹ dar.

(E)-4-Ethyl-3-methyl-5-(3,4-dimethyl-5-formyl-2-pyrrolylmethylen)-3-pyrrolin-2-on [C₁₅H₁₈N₂O₂]

Phototoisomerisierung des (Z)-Diastereomeren¹ in Methanol (TQ-Lampe, 295 nm. Kantenfilter) gab nach Auftrennung durch Mitteldruckchromatographie (CH₂Cl₂/CH₃OH = 20/1) 40% der Theorie des gewünschten (E)-Diastereomeren, Schmp. 231–234 °C.

51 Monatshefte für Chemie, Vol. 114/6-7

¹H-NMR ($DMSO-d_6$, δ , 80 MHz): 9,67 (s, CHO), 6,08 (s, CH), 2,24 (s, CH₃-3), 2,21 (q, J = 7 Hz, CH₂CH₃), 1,88 (s, CH₃-3'), 1,79 (s, CH₃-4'), 0,68 (t, J = 7 Hz, CH₂CH₃) ppm. IR (KBr): 1685, 1620 cm⁻¹. UV (Ethanol): $\lambda = 277$ (15600), 315 (13000), 375 (13800) nm (ε); keine Verschiebung bei Zusatz von Zinkazetat [das (Z)-Diastereomere zeigt in einem solchen Experiment eine Verschiebung von 395 (sh 410) nm auf 427 und 451 nm]. MS (70 eV, 90 °C): m/e (%) = 258 (M^{-} , 100), 243 (77), 229 (46), 215 (23), 201 (17), 149 (47), 41 (25). Hochaufgelöstes MS: $M_{\rm ber.} = 258, 13683$; $M_{\rm gef.} = 258, 1368$.

rac. (4Z, 10Z, 15E)-17-Ethyl-1,19-dioxo-3-methoxycarbonylmethyl-2,2,7,8,12,13,18-heptamethyl-1,2,3,19,23,24-hexahydro-21H-bilin [(4Z,9Z, 15E)-1; C₃₁H₃₈N₄O₄]

Die Darstellung von (4Z, 9Z, 15E)-1 erfolgte auf drei Arten: 1. Photoisomerisierung von (Z, Z, Z)-1¹ adsorbiert an Al₂O₃ (300—450 nm) analog zu⁶ — Ausbeute 5% der Theorie. 2. Photoisomerisierung (300—450 nm) von (Z,Z,Z)-1 in Dimethylsulfoxid mit 2-Thioethanol analog zu⁸ — Ausbeute 30% der Theorie. In diesen beiden Fällen konnten außer dem Edukt und dem angegebenen Produkt keine anderen Diastereomeren (Präp. DC: CHCl₃/CH₃OH = 20/1) isoliert werden. 3. Kondensation von (Z)-4-Methoxycarbonylmethyl-3,3dimethyl-5-(5-tert-butoxy-carbonyl-3,4-dimethyl-2-pyrrolylmethylen)-pyrrolidin-2-on¹⁶ mit (E)-4-Ethyl-3-methyl-5-(3,4-dimethyl-5-formyl-2-pyrrolyl-methylen)-3-pyrrolin-2-on (s. o.) mit CF₃COOH analog Lit.¹³ — Ausbeute 78% der Theorie, Schmp. 170—173 °C.

¹H-NMR (CDCl₃, δ, 360 MHz): 7,30 (breites s, NH), 6,61 (s, --CH = --10), 6,24 (s, --CH = --15), 5,42 (d, J = 1,55 Hz, --CH = --5), 3,76 (s, OCH₃), 3,33 (dt, $J_1 = 1,55$ Hz, $J_2 = 7,12$ Hz, CH-3), 2,60 (d, J = 7,12 Hz, CH₂-3), 2,45 (q, J = 7,7 Hz, CH₂CH₃), 2,17 (s, CH₃-12), 2,12 (breites s, CH₃-8), 1,98 (s, CH₃-13), 1,94 (breites s, CH₃-7), 1,89 (s, CH₃-18), 1,23 (s, CH₃-2), 1,05 (s, CH₃-2), 0,82 (t, J = 7,7 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp.: CH-10 \rightarrow CH₃-8 + CH₃-12; CH-15 \rightarrow CH₃-13; CH-5 \rightarrow CH₃-7; CH₃-12 \rightarrow CH-10; CH₃-8 \rightarrow CH-10; CH₃-13 \rightarrow CH-15; CH₃-7 \rightarrow CH-5; CH₃-7 (1,05) \rightarrow CH₂-3. IR (KBr): 1735, 1705, 1680, 1640, 1600 cm⁻¹. UV-VIS (CHCl₃): $\lambda = 272$ (14600), 348 (18800), 540 (16600) nm (ε). MS (70 eV, 100 °C): m/e (%) = 530 (M⁺), Fragmentierung wie für (4Z, 9Z, 15Z)-1. Hochaufgelöstes MS: $M_{\text{ber}} = 530, 28931$; $M_{\text{gef}} = 530, 2900$.

$\begin{array}{l} [(4Z,9Z,15Z) + (4E,10Z,15Z)] - 17 - Ethyl - 1,19 - dioxo - 2,2,7,8,12,13,18 - heptamethyl - 1,2,3,19,23,24 - hexahydro - 21 H - bilin [(4Z,9Z,15Z) - 2 + (4E, 9Z,15Z) - 2 ; C_{28}H_{34}N_4O_2] \end{array}$

Kondensation von (Z)-1,3,4,5-Tetrahydro-4,4,3',4'-tetramethyl-5-oxo-2,2'pyrromethen-5'-carbonsäure-tert-butylester³ mit (Z)-4-Ethyl-3-methyl-5-(3,4dimethyl-5-formyl-2-pyrrolylmethylen)-3-pyrrolin-2-on¹ analog Lit.¹³ gab das Diastereomerenpaar — Ausbeute 91% der Theorie, das chromatographisch nicht getrennt werden konnte (Umwandlung während des chromatographischen Entwicklungsvorganges); Schmelzbereich: 251–254 °C.

¹H-NMR (CDCl₃, δ , 360 MHz): Signale von (4Z, 9Z, 15Z)-2: 7,68 (breites s, NH), 6,54 (s, --CH = --10), 5,97 (s, CH₃-15), 5,43 (t, J = 1,0 Hz, CH-5), 2,85 (d, J = 1,0 Hz, CH₂-3), 2,52 (q, J = 7,8 Hz, CH₂CH₃), 2,15 (s, CH₃-12), 2,11 (s, CH₃-8), 2,07 (s, CH₃-13), 1,95 (s, CH₃-7), 184 (s, CH₃-18), 1,22 (t, J = 7,8 Hz, CH₂CH₃), 1,21 (s, 2CH₃-2) ppm. NOE-Differenz-Sp.: CH₃-8 \rightarrow CH-10; CH₃-13 \rightarrow CH-15; CH₂-17 \rightarrow CH-15; CH₃-7 \rightarrow CH-5; CH-5 \rightarrow CH₂-3;

CH-15 → CH₂-13. Signale von (4 *E*, 9 *Z*, 15 *Z*)-2: 6,80 (s, −CH = −10), 6,06 (s, −CH = −15), 5,86 (t, *J* = 1,5 Hz, −CH = 5), 2,82 (d, *J* = 1,5 Hz, CH₂-3), 2,51 (q, *J* = 7,8 Hz, CH₂CH₃), 2,20 und 2,18 (s, CH₃-12 und CH₃-8), 2,0 und 2,01 (s, CH₃-7 und CH₃-13), 1,90 (s, CH₃-18), 1,21 (t, *J* = 7,8 Hz, CH₂CH₃) ppm. Da dieses Diastereomere im Gleichgewicht nur zu ca. 8% vorliegt, konnten in CHCl₃ keine NOE-Differenzspektren erhalten werden. Für Pyridin s. d. COSY-Daten der Abb. 1. IR (KBr): 1733, 1680, 1645, 1595 cm⁻¹, UV-VIS (CHCl₃): $\lambda = 272$ (19400), 345 (35000), 580 (14600) nm (ε). Ms (70 eV, 100 °C): *m*/e (%) = 458 (5), 272 (59), 259 (11), 257 (100), 233 (68), 164 (13), 151 (15), 83 (20), 57 (33), 43 (21), 41 (40). Hochaufgelöstes MS: *M*_{ber.} = 458,26818, *M*_{gef.} = 458,2673.

$\begin{array}{l} [(4Z,9Z,15E) + (4E,9Z,15E)] \text{-} 17 \text{-} Ethyl \text{-} 1,19 \text{-} dioxo \text{-} 2,2,7,8,12,13,18 \text{-} heptamethyl \text{-} 1,2,3,19,23,24 \text{-} hexahydro \text{-} 21 \text{H} \text{-} bilin \ [(4Z,9Z,15E) \text{-} 2 + (4E,9Z,15E) \text{-} 2 + (4E,9Z,15E) \text{-} 2 + (2E,9Z,15E) \text{-} 2 +$

Kondensation von (Z)-1,3,4,5-Tetrahydro-4,4,4',4'-tetramethyl-5-oxo-2,2'pyrromethen-5'-carbonsäure-tert-butylester³ mit (E)-4-Ethyl-3-methyl-5-(3,4dimethyl-5-formyl-2-pyrrolylmethylen)-3-pyrrolin-2-on (s. o.) analog Lit.¹³ gab das Diastereomerenpaar — Ausbeute 76% der Theorie, Schmelzbereich: Umlagerung bei 180—185 °C, Schmelzen 251—254 °C.

¹H-NMR (CDCl₃, δ , 360 MHz): Signale von (4Z, 9Z, 15E)-2: 6,51 (s, -CH = -10), 6,17 (s, -CH = -15), 5,34 (breites s, -CH = -5), 2,69 (breites s, CH_2 -3), 2,40 (q, $J = 7,3 Hz, CH_3$), 2,0 (s, CH_3 -12), 2,05 (s, CH_3 -8), 1,91 (s, CH_3 -13), 1,88 (s, CH_3 -7), 1,82 (CH_3 -18), 1,15 (s, 2 CH_3 -2), 0,76 (t, J = 7,3 Hz, CH_2CH_3) ppm. NOE-Differenz-Sp.: CH-10 \rightarrow CH₃-12 + CH₃-8; CH-5 \rightarrow CH₂-3 + CH₂-7; $CH-15 \rightarrow CH_3-13$. Die Signale von (4E, 9Z, 15E)-2 konnten nicht zugeordnet werden, da in CDCl₃ im Gleichgewicht nur etwa 2% vorliegen. Deshalb auch Aufnahme in Pyridin-d₅, da hier das Verhältnis etwa 0,6:1 beträgt: ¹H-NMR (Pyridin-d₅, δ , 360 MHz): (4Z, 9Z, 15E)-2: 9,71 (breites s, 2NH), 9,27 (breites s, NH), 6.96 (s, -CH = -10), 6.64 (s, -CH = -15), 5.56 (t, J = 1.4 Hz, -CH = -5), 2,69 (q, J = 7,4 Hz, CH_2CH_3), 2,66 (d, J = 1,4 Hz, CH_2-3), 2,18 (s, $\rm CH_3\mathchar`-12),\ 2,14$ (s, $\rm CH_3\mathchar`-8),\ 2,05$ (CH_3\mathchar`-13),\ 1,96 (s, $\rm CH_3\mathchar`-7),\ 1,94$ (CH_3\mathchar`-18),\ 1,13 (s, 2 CH₃-2), 0,85 (t, J = 7.4 Hz, CH₂CH₃) ppm. Differenz-NOE-Sp.: CH-10 \rightarrow $CH_{3}-8 + CH_{3}-12$; $CH-5 \rightarrow CH_{3}-7$. (4E, 9Z, 15E)-2: 9,73 (breites s, 2NH), 9,25 (breites s, NH), 7,02 (s, --CH = --10), 6,61 (s, --CH - 15), 6,17 (t, J = 1,7 Hz, -CH = -5), 3,44 (d, J = 1,7 Hz, CH_2 -3), 2,68 (q, J = 7,4 Hz, CH_2CH_3), 2,33 (s, CH₃-8 o. CH₃-12), 2,14 (s, CH₃-8 o. CH₃-12), 2,4 (s, CH₃-13), 2,02 (s, CH₃-7), 1,95 (s, CH₃-18), 1,31 (s, 2CH₃-2), 0,91 (t, J = 7,4 Hz, CH₂-CH₃) ppm. NOE-Differenz-Sp. : CH-10 \rightarrow CH₃-8 + CH₃-12. Im Gegensatz zu (Z, Z, E)-2 tritt für (E, Z, E)-2 kein Unterschied in den Signalhöhen der Methylgruppen des Pyrromethenfragmentes auf. IR (KBr): 1720, 1690, 1595, 1680, 1635 cm⁻¹. UV-VIS (CHCl₃): $\lambda = 272$ (14 800), 345 (18 200), 536 (15 200) nm (ϵ). MS (70 eV, $75 \,^{\circ}\text{C}$): $m/e \,(\%) = 458 \,(47), \, 318 \,(29), \, 262 \,(100), \, 259 \,(34), \, 233 \,(40), \, 229 \,(35), \, 149$ (47), 57 (73). Hochaufgelöstes MS: $M_{\text{ber.}} = 458,26818$; $M_{\text{gef.}} = 458,2683$.

(Z)- und (E)-1,3,3,3',4'-Pentamethyl-1,3,4,5-tetrahydro-5-oxo-2,2'-pyrromethen-5'-carbonsäure-tert-butylester [C₁₉H₂₈N₂O₃]

220 mg (Z)-3,3,3',4'-Tetramethyl-1,3,4,5-tetrahydro-5-oxo-2,2'-pyrromethen-5'-carbonsäure-tert-butylester³ (0,69 mmol) löste man in 40 ml absol. Toluol, fügte 27 mg K (0,69 mmol) zu und erhitzte unter Argonschutz 16 h unter

Rückfluß. Nach Zugabe von $130 \,\mu$ l Dimethylsulfat (1,38 mmol) hielt man weitere 15 min unter Rückfluß, rotierte ab und nahm in 40 ml CH₂Cl₂ auf. Zweimaliges Waschen mit H₂O (50 ml), Trocknen über Na₂SO₄, Abrotieren und Mitteldruckchromatographie (Petrolether/Ethylethanoat = 3/1) gab drei Fraktionen; als raschest wandernde Zone isolierte man:

1. 52 mg (23% der Theorie) 3,4-Dihydro-5-methoxy-3,3,3',4'-tetramethyl-2,2'-pyrromethen-5'-carbonsäure-tert-butylester $[\rm C_{19}H_{28}N_2O_3]$ von Schmp. 128—129 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 10,67 (breites s, NH), 5,58 (s, --CH =), 4,05 (s, OCH₃), 2,52 (s, CH₂), 2,27 (s, CH₃), 2,01 (s, CH₃), 1,54 (s, *tert*-Butyl), 1,28 (s, 2 CH₃-3) ppm. IR (KBr): 1685, 1600 cm⁻¹. UV (CHCl₃: λ = 261 (10 100), 273 (sh, 8600), 292 (sh, 7500), 305 (sh, 9700), 342 (22 800) nm (ε). MS (70 eV, 70 °C): *m*/e (%) = 332 (*M*⁺, 68), 276 (100), 261 (47), 243 (49), 230 (16), 217 (22). Hoch-aufgelöstes MS: *M*_{ber}. = 332,209999; *M*_{get}. = 332,20985.

2. 120 mg (52% der Theorie) des (Z)-Diastereomeren vom Schmp. 162–173 °C (unter Umwandlungsvorgängen):

¹H-NMR (CDCl₃, δ , 80 MHz): 8,22 (breites s, NH), 5,29 (s, --CH =), 2,71 (s, N--CH₃), 2,38 (s, CH₂), 2,23 (s, CH₃), 1,84 (s, CH₃), 1,57 (s, *tert*-Butyl), 1,32 (s, 2 CH₃-3) ppm. IR (KBr): 1730, 1670 cm⁻¹. UV (CHCl₃): λ = 292 (18 800) nm (ϵ). MS (70 eV, 70 °C): *m*/e (%) = 332 (*M*⁺, 70), 276 (100), 259 (34), 229 (40), 215 (72), 204 (21), 146 (16), 83 (21), 57 (59). Hochaufgelöstes MS: *M*_{ber.} = 332,20999; *M*_{gef.} = 332,2110.

3. 40 mg (17% der Theorie) des (*E*)-Diastereomeren vom Schmp. 150-160 °C (unter Umwandlungsvorgängen):

¹H-NMR (CDCl₃, δ , 80 MHz): 8,47 (breites s, NH), 5,32 (s, --CH =), 3,04 (s, N--CH₃), 2,38 (s, CH₂), 2,23 (s, CH₃), 1,89 (s, CH₃), 1,56 (s, *tert*-Butyl), 1,18 (s, 2 CH₃-3) ppm. NOE: N--CH₃ \rightarrow --CH =: 19%. IR (KBr): 1725, 1655 cm⁻¹. UV (CHCl₃): λ = 283 (20700), 330 (sh, 6400) nm (ε). Hochaufgelöstes MS: $M_{\rm ber.}$ = 332,20999, $M_{\rm gef.}$ = 332,20918. Fragmentierung wie beim (Z)-Diastereomeren.

$\begin{array}{l} \left[\left(4Z, 9Z, 15Z \right) + \left(4E, 10Z, 15Z \right) \right] \text{-}17 \text{-} Ethyl\text{-}1, 19 \text{-} dioxo\text{-}3, 3, 7, 8, 12, 13, 18, 21 \text{-} oktamethyl\text{-}1, 2, 3, 19, 22, 24 \text{-} hexahydro\text{-}21 \text{H}\text{-} bilin \left[\left(4Z, 9Z, 15Z \right) \text{-} \mathbf{3} + \left(4E, 10Z, 15Z \right) \text{-} \mathbf{3} \right] \right] \\ \left[\left(10Z, 15Z \right) \text{-} \mathbf{3} \right] \\ \left[\left(229 \text{H}_{36} \text{N}_4 \text{O}_2 \right] \right] \\ \end{array}$

Kondensation von (Z)-1,3,4,5-Tetrahydro-1,3,3,3',4'-pentamethyl-5-oxo-2,2'-pyrromethen-5'-carbonsäure-*tert*-butylester (s. o.) mit (Z)-4-Ethyl-3-methyl-5-(3,4-dimethyl-5-formyl-2-pyrrolylmethylen)-3-pyrrolin-2-on¹ analog Lit.¹³ gab das Diastereomerenpaar — Ausbeute 89% der Theorie, das chromatographisch nicht getrennt werden konnte (zu rasche Umwandlung). Schmelzbereich 175—195 °C.

¹H-NMR (CDCl₃, δ , 360 MHz). Signale des (Z, Z, Z)-Diastereomeren: 6,79 (s, --CH = --10), 5,98 (s, --CH = --15), 5,52 (s, --CH = --5), 2,81 (s, N--CH₃), 2,52 (q, J = 7,5 Hz, CH₂CH₃), 2,46 (s, CH₂-2), 2,21 (s, CH₃-8), 2,18 (s, CH₃-12), 2,07 (s, CH₃-13), 1,99 (s, CH₃-7), 1,91 (s, CH₃-18), 1,40 (s, 2 CH₃-3), 1,20 (t, J = 7,5 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp.: CH--10 \rightarrow CH₃-8 + CH₃-12; CH-15 \rightarrow CH₃-13; CH-5 \rightarrow CH₃-7 + CH₃-3; CH₂CH₃ \rightarrow CH-15; CH₂-2 \rightarrow CH₃-3. Signale des (E, Z, Z)-Diastereomeren: 6,78 (s, --CH = --10), 5,92 (s, --CH = --15), 5,54 (s, --CH = --5), 3,13 (s, N-CH₃), 2,51 (q, J = 7,5 Hz, CH₂CH₃), 2,37 (s, CH₂-2), 2,20, 2,16, 2,05, 1,95 (s, 4 CH₃), 1,92 (s, CH₃-18), 1,25 (s, 2 CH₃-3), 1,21 (t, J = 7,5 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp.: N--CH₃ \rightarrow CH-5; CH₂CH₃ \rightarrow CH-15. IR (KBr): 1735, 1700, 1645, 1590 cm⁻¹. UV-VIS

 $({\rm CHCl_3})\colon \lambda=291~(19~200),~332~(41~000),~588~(23~500),~668~({\rm sh},~10~600)~{\rm nm}~(\varepsilon).$ MS $(70~{\rm eV},~60~^{\circ}{\rm C})\colon m/{\rm e}~(\%)=472~(M^+,~70),~279~(35),~167~(49),~149~(90),~97~(39),~94~(35),~83~(54),~71~(77),~57~(100).$ Hochaufgelöstes MS: $M_{\rm ber.}=472,28383;~M_{\rm gef.}=472,28387.$

$\begin{array}{l} [(4Z,9Z,15E) + (4E,10Z,15E)]^{-17} \cdot Ethyl^{-1},19 \cdot dioxo^{-3},3,7,8,12,13,18,21 \cdot oktamethyl^{-1},2,3,19,22,24 \cdot hexahydro^{-21} H \cdot bilin \ [(4Z,10Z,15E)^{-3}+(4E,10Z,15E)^{-3}; C_{29}H_{36}N_4O_2] \end{array}$

Kondensation von (Z)-1,3,4,5-Tetrahydro-1,3,3',3',4'-pentamethyl-5-oxo-2,2'-pyrromethen-5'-carbonsäure-tert-butylester (s.o.) mit (E)-4-Ethyl-3-methyl-5-(3,4-dimethyl-5-formyl-2-pyrrolylmethylen)-3-pyrrolin-2-on (s. o.) analog Lit.¹³ gab nach Säulenchromatographie (Al₂O₃, CH₂Cl₂/CH₃OH = 60:1) das (Z, Z, E) + (E, Z, E)-Diastereomerengemisch, das chromatographisch wegen der raschen Umwandlung nicht getrennt werden konnte. Schmelzbereich: 155–160 °C, dann erneut Kristallisation, 202–209 °C.

¹H-NMR (CDCl₃, δ , 360 MHz): Signale des (Z, Z, E)-Diastereomeren [gegen-über denen des (E, Z, E)-Diastereomeren verbreitert] 6,71 (s, --CH = --10), 6,29 (s, --CH = --15), 5,42 (s, --CH = --5), 2,96 (s, N--CH₃), 2,68 (q, J = 7,5 Hz, CH₂, CH₃), 2,40 (s, CH₂-2 + 2 CH₃), 2,01 (s, CH₃), 1,93 (s, CH₃), 1,91 (s, CH₃-18), 1,35 (s, 2 CH₃-3), 0,88 (t, J = 7,5 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp. : CH-5 \rightarrow CH₃-3. Signale des (E, Z, E)-Diastereomeren : 8,61 (breites s, NH), 6,66 (s, --CH = --10), 6,28 (s, --CH = --15), 5,55 (s, --CH = -5), 3,09 (s, N--CH₃), 2,43 (s, CH₂-2), 2,37 (q, J = 7,5 Hz, CH₂CH₃), 2,18 (s, CH₃-12), 2,14 (s, CH₃-8), 1,98 (s, CH₃-7), 1,97 (s, CH₃-3), 1,89 (s, CH₃-18), 1,53 (s, 2 CH₃-3), 0,74 (Z, J = 7,5 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp. : CH-5 → CH₃-7 + NCH₃; CH-15 → CH₃-13. IR (KBr): 1725, 1715, 1685, 1620, 1595 cm⁻¹. UV-VIS (CHCl₃): $\lambda = 296$ (26 500), 303 (28 800), 344 (30 400), 528 (32 800) nm (ε). MS (70 eV, 100 °C): m/e (%) = 472 (M⁺, 87), 457 (9), 332 (9), 149 (87), 71 (37), 69 (33), 57 (100). Hochaufgelöstes MS: M_{ber.} = 472,2833.

$\begin{array}{l} (4Z,9Z,15Z)\text{-} und \ (4E,10Z,15Z)\text{-}17\text{-}Ethyl\text{-}1,3,19\text{-}trioxo\text{-}2,2,7,8,12,13,18\text{-}hepta\text{-}methyl\text{-}1,2,3,19,23,24\text{-}hexahydro\text{-}21\,H\text{-}bilin \ [(4Z,9Z,15Z)\text{-}4\ und \ (4E,10Z,15Z)\text{-}4;\ C_{28}H_{32}N_4O_3] \end{array}$

626 mg (2,7 mmol) (Z)-1,3,4,5-Tetrahydro-3,5, dioxo-4,4,3',4'-tetramethyl-2,2'-pyrromethen¹⁵ und 696 mg (2,7 mmol) (Z)-4-Ethyl-3-methyl-5-(3,4-di-methyl-5-formyl-2-pyrrolylmethylen)-3-pyrrolin-2-on¹ rührte man 8 h in einer Mischung aus 450 ml CH₃OH, 0,5 ml konz. KBr und 0,5 ml CH₃COOH bei 40 °C. Nach dem Abkühlen versetzte man mit 200 ml CHCl₃ + 500 ml 1% Et_3 N in H₂O, trennte die organische Phase ab und extrahierte noch 2× mit CHCl₃. Nach Waschen mit Wasser und Trocknen über Na₂SO₄ rotierte man ab und chromatographierte an 120 g Kieselgel (CHCl₃ + 0,5% EtOH). Dabei erhielt man 784 mg (4Z, 10Z, 15Z)-4 (61% der Theorie) als rascher wandernde Zone; Schmp. nicht unter 250 °C.

(4Z, 9Z, 15Z)-4:

 CH₃-12), 2,18 (q, J = 0.7 Hz, CH₃-8), 2,11 (s, CH₃-13), 2,08 (q, J = 0.7 Hz, CH₃-7), 1,82 (s, CH₃-18), 1,27 (s, 2 CH₃-2), 1,24 (t, J = 7.6 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp.: CH-10 \rightarrow CH₃-8 + CH₃-12; CH-5 \rightarrow CH₃-7; CH-15 \rightarrow CH₃-13; CH₂-17 \rightarrow CH-15. IR (KBr): 12, 1726, 1672, 1632, 1590 cm⁻¹. UV-VIS (CHCl₃: $\lambda = 293$ (20 900), 368 (54 200), 614 (sh, 17 000), 646 (20 000) nm (ε). MS: (70 eV, 200 °C), m/e (%) = 472 (M^+ , 100), 457 (23), 403 (13), 320 (13), 243 (84), 230 (31), 83 (41), 44 (99). Hochaufgelöstes MS: $M_{\rm ber.} = 472,24744$; $M_{\rm get.} = 472,24478$.

(4E, 10Z, 15Z)-4:

¹H-NMR (CDCl₃, δ , 360 MHz): 11,74 (breites s, NH), 9,69 (breites s, NH), 8,87 (breites s, NH), 6,91 (s, --CH = --10), 6,41 (s, --CH = --5), 6,20 (s, --CH = --15), 2,61 (q, J = 7,6 Hz, CH₂CH₃), 2,23 (s, CH₃-12), 2,18 (s, CH₃-8), 2,15 (s, CH₃-13), 1,94 (s, CH₃-7), 1,86 (s, CH₃-18), 1,25 (t, J = 7,6 Hz, CH₂CH₃), 1,19 (s, 2 CH₃-2) ppm. NOE-Differenz-Sp.: CH₃-12 \rightarrow CH-10; CH₃-8 \rightarrow CH-10, CH₃-13 \rightarrow CH-15; CH₂-17 \rightarrow CH-15; CH₃-7 \rightarrow CH-5. IR (KBr): 1732, 1738, 1696, 1667, 1590 cm⁻¹. UV-VIS (CHCl₃: λ = 298 (21600), 375 (27700), 610 (sh, 12700), 637 (15800) nm (ε). MS (70 eV, 250 °C): m/e (%) = 472 (M⁺, 100), Fragmentierung wie im Falle des (Z, Z, Z)-Diastereomeren. Hochaufgelöstes MS: M_{ber} = 472,24744; M_{get} = 472,2482.

Kondensation der (Z)- oder (E)-konfigurierten A-B-Pyrromethenone mit dem (E)-konfigurierten C-D-Pyrromethenon zeigte wohl die (15E) konfigurierten Diastereomeren Derivate 4, deren Isolierung und Charakterisierung aber an deren thermischer Unbeständigkeit [vollständige Reversion zu (15Z)-Derivaten scheiterte].

1-Benzyloxylmethyl-3,4-dimethylpyrrol-2-carbaldehyd [C₁₅H₁₇NO₂]

1,23 g (10 mmol) 3,4-Dimethylpyrrol-2-carbaldehyd¹⁹ löste man in 50 ml absol. Toluol, fügte 0,39 g K (10 mmol) zu und kochte 16 h unter Rückfluß. Nach dem Abrotieren wurde in 50 ml absol. Tetrahydrofuran aufgeschlämmt und 1,5 ml (11 mmol) Benzyl-chlormethyl-ether (Fluka) zugetropft und 1 h bei Raumtemperatur gerührt. Abrotieren, Aufnehmen in 100 ml CH₂Cl₂, zweimaliges Waschen mit 50 ml H₂O, Trocknen über Na₂SO₄, Abrotieren und Mitteldruckchromatographie (Petrolether/Ethylenethanoat = 8/1) gab 1,47 g (60% der Theorie) vom Sdp. 200 °C (0,5 Torr).

¹H-NMR (CDCl₃, δ , 80 MHz): 9,76 (s, CHO), 7,30 (s-förmig, Phenyl), 6,84 (s, CH), 5,69 (s, N--CH₂--O), 4,52 (s, O--CH₂), 2,27 (s, CH₃-3), 1,99 (s, CH₃-4) ppm. IR (KBr): 1660 cm⁻¹. UV (CHCl₃): λ = 285 (sh, 12100), 303 (13800) nm (ϵ). MS (70 eV, 25 °C): m/e (%) = 243 (M^+ , 13), 212 (16), 196 (17), 184 (30), 152 (65), 137 (100), 122 (29), 91 (95), 65 (25). Hochaufgelöstes MS: $M_{\rm ber.}$ = 243, 12593; $M_{\rm gef.}$ = 243,12512.

$\label{eq:constraint} \begin{array}{l} (Z) \mbox{-}4\mbox{-}ethyl\mbox{-}3\mbox{-}methyl\mbox{-}3\mbox{-}dimethyl\mbox{-}pyrrol\mbox{-}2\mbox{-}ylmethyl\mbox{-}n\mbox{-}2\mbox{-}ylmethyl\mbox{-}2\mbox{-}ylmethy$

1,42 g (5,8 mmol) des voranstehenden Aldehyds kondensierte man mit 0,73 g (5,8 mmol) 4-Ethyl-3-methyl-3-pyrrolin-2-on²⁰ in 30 ml heiß gesättigter methanolischem KOH 24 h am Rückfluß (Argonschutz). Aufnehmen in 100 ml CH₂Cl₂, dreimaliges Waschen mit H₂O, Trocknen über Na₂SO₄ und Abrotieren gab nach Umkristallisieren aus Petrolether/Ethylethanoat 1,57 g (77% der Theorie) vom Schmp. 120–122 °C.

¹H-NMR (CDCl₃, δ, 80 MHz): 7,31 (s-förmig, Phenyl), 6,60 (s, CH-Pyrrol),

5,98 (s, --CH =), 5,12 (s, N--CH₂--O), 4,46 (s, O---CH₂), 2,48 (q, J = 7,5 Hz, CH₂CH₃, 1,99 (s, 2 CH₃), 1,91 (s, CH-3), 1,15 (t, J = 7,5 Hz, CH₂CH₃) ppm. IR (KBr): 1 680 cm⁻¹. UV (CHCl₃): $\lambda = 263$ (14 000), 373 (13 600) nm (z). MS (70 eV, 100 °C): m/e (%) = 350 (M^+ , 39), 242 (16), 229 (100), 214 (41), 199 (14), 91 (35). Hochaufgelöstes MS: $M_{\rm ber.} = 350,19943$; $M_{\rm gef.} = 350,19965$.

(Z)-4-Ethyl-1,3-dimethyl-5-(1-benzyloxymethyl-3,4-dimethylpyrrol-2ylmethylen)-3-pyrrolin-2-on [C₂₃H₂₈N₂O₂]

4g pulv. KOH rührte man in 40 ml absol. Dimethylsulfoxid 20 min und löste darin dann 1,29 g (3,7 mmol) des obigen Pyrromethenons. Nach Zutropfen von 0,46 ml (4,9 mmol) Dimethylsulfat fügte man nochmals 1 g pulv. KOH zu, rührte 10 min bei Raumtemperatur und goß in 50 ml H₂O. Zweimaliges Ausschütteln mit je 100 ml CH₂Cl₂, dreimaliges Waschen mit je 50 ml H₂O Trocknen über Na₂SO₄ und Abrotieren gab nach Mitteldruckchromatographie (Petrolether/Ethylethanoat = 3,5/1) 1,2 g (89% der Theorie) eines gelben Harzes.

¹H-NMR (CDCl₃, δ , 80 MHz): 7,28 (s-förmig, Phenyl). 6,60 (s, CH-Pyrrol), 5,96 (s, --CH =), 5,11 (s, N--CH₂--O), 4,42 (s, O--CH₂), 2,83 (s, N--CH₃), 2,47 (q, J = 7.5 Hz, CH₂CH₃), 2,01 (s, CH₃), 1,92 (s, CH₃), 1,86 (s, CH₃), 1,13 (t, J = 7.5 Hz, CH₂CH₃) ppm. IR (KBr): 1690 cm⁻¹. UV (CHCl₃): $\lambda = 266$ (13 200), 375 (8 100), nm (ε). MS (70 eV, 35 °C): m/e (%) = 364 (M^+ , 29), 243 (100), 229 (35), 213 (15), 91 (58). Hochaufgelöstes MS: $M_{ber.} = 364,21508$; $M_{gef.} = 364,21583$.

$\label{eq:constraint} \begin{array}{l} (Z) \text{-}4\text{-}Ethyl \text{-}1,3\text{-}dimethyl \text{-}5\text{-}(3,4\text{-}dimethyl \text{-}pyrrol \text{-}2\text{-}ylmethylen) \text{-}3\text{-}pyrrol \text{in}\text{-}2\text{-}on \\ [\text{C}_{15}\text{H}_{20}\text{N}_2\text{O}] \end{array}$

Unter Eiskühlung löste man 8g AlBr₃ (Merck) langsam in 80 ml absol. Tetrahydrofuran und fügte diese Lösung langsam zu 2,9 g (8 mmol) des obigen Pyrromethenons, gelöst in 45 ml absol. Tetrahydrofuran. Nach 1 h Rühren bei Raumtemperatur fügte man eine Mischung von 80 ml H₂O, 16 g KOH und 8 ml 40% Benzyl-trimethylammoniumhydroxidlösung (Fluka) hinzu und erhitzte noch 10 min unter Rückfluß. Dreimaliges Ausschütteln mit 50 ml CH₂Cl₂, dreimaliges Waschen mit H₂O, Trocknen über Na₂SO₄, Abrotieren und Mittel-druckchromatographie (Petrolether/Ethylethanoat = 5/1) gab 1,2 g (62% der Theorie) vom Schmp. 69–72 °C.

¹H-NMR (CDCl₃, δ , 80 MHz); 9,44 (breites s, NH), 6,75 (s, H-Pyrrol), 6,09 (s, --CH=), 3,05 (s, N--CH₃), 2,46 (q, J = 7,6 Hz; CH₂CH₃), 2,05 (s, 2 CH₃), 1,76 (s, CH₃), 1,13 (t, J = 7,6 Hz, CH₂CH₃) ppm. IR (KBr): 1665 cm⁻¹. UV (CHCl₃): $\lambda = 264$ (10 400), 385 (11 900), nm (ε). MS (70 eV, 45 °C): m/e (%) = 244 (M^+ , 45), 229 (22), 214 (10), 200 (5), 153 (13), 125 (25), 95 (16), 67 (15), 54 (28), 39 (26), 28 (100). Hochaufgelöstes MS: $M_{ber} = 244,15756$; $M_{gef} = 244,15684$.

(Z)- und (E)-4-Ethyl-1,3-dimethyl-5-(3,4-dimethyl-5-formylpyrrol-2ylmethylen)-3-pyrrolin-2-on [C₁₆H₂₀N₂O₂]

1,1 g (4,5 mmol) des voranstehenden Pyrromethenons rührte man 4 min bei Raumtemperatur in 5 ml Trifluoressigsäure und dann 1 min bei 0 °C. Zutropfen von 1,1 ml CH(OC_2H_5)₃ (Fluka), 4 min Rühren und Eingießen in 50 ml Eis-H₂O wurde noch von 20 min Rühren bei Raumtemperatur gefolgt. Aufnehmen in 150 ml CH₂Cl₂, dreimaliges Waschen mit je 40 ml H₂O, Trocknen über Na₂SO₄. Abrotieren und Mitteldruckchromatographie (Petrolether/Ethylethanoat = 3/2) gab 0,75 g (61% der Theorie) des (Z)-Diastereomeren und 0,23 g (19% der Theorie) des (E)-Diastereomeren :

(Z)-Diastereomer: Schmp. 154-156 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 9,59 (s, CHO), 9,08 (breites s, NH), 5,89 (s, =CH—), 2,90 (s, N—CH₃), 2,50 (q, J = 7,5 Hz, CH₂CH₃), 2,27 (s, CH₃), 1,96 (s, CH₃), 1,91 (s, CH₃), 1,16 (t, J = 7,5 Hz, CH₂CH₃) ppm. NOE: N—CH₃ \rightarrow —CH = : 0,5%. IR (KBr): 1700, 1615 cm⁻¹. UV (CHCl₃): $\lambda = 268$ (18 000), 307 (9 700), 374 (16 300) nm (ε). MS (70 eV, 125 °C): m/e (%) = 272 (M^+ , 80), 257 (100), 242 (29), 136 (9). Hochaufgelöstes MS: $M_{\rm ber.} = 272,15248; M_{\rm gef.} = 272,15268.$

(E)-Diastereomer: Schmp. 180-182 °C.

¹H-NMR (CDCl₃, δ , 80 MHz): 9,80 (breites s, NH), 9,52 (s, CHO), 5,95 (s, --CH =), 3,12 (s, N--CH₃), 2,24 (s, CH₃), 2,16 (q, J = 7,5 Hz, CH₂CH₃), 1,92 (s, CH₃), 1,83 (s, CH₃), 0,73 (t, J = 7,5 Hz, CH₂CH₃) ppm. NOE: N--CH₃ \rightarrow --CH = : 19%. IR (KBr): 1675, 1645 cm⁻¹. UV (CHCl₃): $\lambda = 268$ (17600), 305 (9700), 373 (15800) nm (ε). MS (70 eV, 125 °C): m/e (%) = 272 (M^+ , 81), 257 (100), 242 (33), 136 (12). Hochaufgelöstes MS: $M_{\rm ber.} = 272,15248; M_{\rm gef.} = 272,15188.$

rac. (5E,9Z,15Z) und (5E,9Z,15E)-17-Ethyl-1,19-dioxo-methoxycarbonylmethyl-2,2,7,8,12,13,18,21,24-nonamethyl-1,2,3,19,23,24-hexahydro-21 Hbilin [(5E,9Z,15Z)-5 und (5E,9Z,15E)-5; C₃₃H₄₂N₄O₄]

Kondensation von (E)-1,3,4,5-Tetrahydro-3-methoxy-carbonylmethyl-1,4,4,3',4'-pentamethyl-5-oxo-2,2'-pyrromethen-5'-carbonsäure-*tert*-butylester³ und (Z)-4-Ethyl-1,3-dimethyl-5-(3,4-dimethyl-5-formyl-pyrrol-2-ylmethylen)-3-pyrrolin-2-on (s. o.) analog Lit.¹³ gab nach Säulenchromatographie (Al₂O₃, CH₂Cl₂) 56% der Theorie (5*E*, 9*Z*, 15*Z*)-5 und 7% des (5*E*, 9*Z*, 15*E*)-Diastereomeren (s. u.).

(5*E*, 9*Z*, 15*Z*)-5: Schmp. 156-161 °C.

¹H-NMR (CDCl₃, δ , 360 MHz): 6,64 (s, -CH = -10), 6,33 (s, -CH = -15), 5,68 (d, J = 1,1 Hz, -CH = -5), 4,00 (m, J_1 = 1,1 Hz, J_2 = -3,6 Hz, J_3 = 9,7 Hz, CH-3), 3,44 (s, O-CH₃), 3,10 (s, N-CH₃-21), 3,01 (s, N-CH₃-24), 2,60 (m, J_1 = 16,8 Hz, J_2 = 9,7 Hz, J_3 = -3,6 Hz, CH₂COOCH₃), 2,57 (q, J = 7,6 Hz, HCHCH₃), 2,56 (q, J = 7,6 Hz, HCHCH₃), 2,18 (s, CH₃-12), 2,13 (s, CH₃-8), 1,99 (s, CH₃-7), 1,98 (s, CH₃-13), 1,93 (s, CH₃-18), 1,21 (t, J = 7,6 Hz, CH₂CH₃), 1,13 (s, CH₃-2), 1,05 (s, CH₃-2) ppm. Differenz-NOE-Sp.: CH-10 \rightarrow CH₃-8 + CH₃-12; CH-15 \rightarrow CH₃-13; CH-5 \rightarrow NCH₃-21, CH₃-7; NCH₃-21 \rightarrow CH-5; CH₂CH₃ \rightarrow CH-15. IR (KBr): 1725, 1685, 1615, 1590 cm⁻¹. UV-VIS (CHCl₃): λ = 270 (14 900), 296 (sh, 14 200), 344 (19 800), 535 (19 000) nm (ε). MS (70 eV, 135 °C): m/e (%) = 558 (M^+ , 6), 530 (19), 259 (21), 247 (28), 123 (40), 111 (29), 97 (45), 95 (31), 85 (45), 83 (52), 71 (73), 57 (100). Hochaufgelöstes MS: $M_{ber.}$ = 558,32061; $M_{gef.}$ = 558,3212.

(5*E*, 9*Z*, 15*E*)-5: Schmp. 140-148 °C unter Umwandlung.

¹H-NMR (CDCl₃, δ , 360 MHz): 6,64 (s, --CH = --10), 6,34 (s, --CH = --15), 5,68 (d, J = 0.8 Hz, --CH = --5), 3,95 (m, CH-3), 3,48 (s, OCH₃), 3,25 (s, N--CH₃-24), 3,09 (s, N--CH₃-21), 2,76 + 2,40 (m, CH₂--COOCH₃), 2,30 (q, J =7,5 Hz, CH₂CH₃), 2,18 (s, CH₃-12), 2,14 (s, CH₃-8), 1,99 (s, CH₃-7), 1,97 (s, CH₃-13), 1,88 (s, CH₃-18), 1,07 (s, CH₃-2), 1,03 (s, CH₃-2), 0,78 (t, J = 7,5 Hz, CH₂CH₃) ppm. NOE-Differenz-Sp.: CH-10 \rightarrow CH₃-8 + CH₃-12; CH-15 \rightarrow Dieses Diastereomer konnte auch durch Kondensation der "A—B-Hälfte" mit der entsprechenden (E)-konfigurierten "C—D-Hälfte" in Ausbeuten von 40% der Theorie erhalten werden.

Literatur

- ¹ Falk H., Grubmayr K., Magauer K., Müller N., Zrunek U., Isr. J. Chem. (im Druck).
- ² Rüdiger W., Structure and Bonding 40, 101 (1980).
- ³ Falk H., Grubmayr K., Kapl G., Zrunek U., Monatsh. Chem. **113**, 1329 (1982).
- ⁴ Falk H., Grubmayr K., Hofer O., Monatsh. Chem. 106, 301 (1975).
- ⁵ Falk H., Grubmayr K., Herzig U., Hofer O., Tetrahedron Lett. 1975, 559.
- ⁶ Falk H., Grubmayr K., Angew. Chem. 89, 487 (1977).
- ⁷ Falk H., Grubmayr K., Haslinger E., Schlederer T., Thirring K., Monatsh. Chem. 109, 1451 (1978).
- ⁸ Falk H., Müller N., Schlederer T., Monatsh. Chem. 111, 159 (1980).
- ⁹ Falk H., Thirring K., Z. Naturforsch. 35b, 376 (1980).
- ¹⁰ Kufer W., Cmiel E., Thümmler F., Rüdiger W., Schneider S., Scheer H., Photochem. Photobiol. **36**, 603 (1982).
- ¹¹ Falk H., Lehner F., unveröffentlicht, 1980.
- ¹² Thümmler F., Rüdiger W., Tetrahedron (im Druck), sowie priv. Mitt. von R. W.
- ¹³ Gossauer A., Blacha-Puller M., Zeisberg R., Wray V., Ann. Chem. 1981, 342.
- ¹⁴ Falk H., Thirring K., Z. Naturforsch. **34 b**, 1600 (1979).
- ¹⁵ Atkinson J. H., Johnson A. W., Raudenbusch W., J. Chem. Soc. 1966 C, 1155.
- ¹⁶ Gossauer A., Inhoffen H. H., Ann. Chem. 738, 18 (1970).
- ¹⁷ Kratky C., 1980, unveröffentlicht.
- ¹⁸ Grubmayr K., Monatsh. Chem. **113**, 1073 (1982).
- ¹⁹ Fischer H., Höfelman H., Ann. Chem. **533**, 216 (1938).
- ²⁰ Plieninger H., Kurze I., Ann. Chem. 680, 60 (1968).